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In the framework of the formal theory of overdetermined systems of partial 
differential equations, it is shown that the Yang-Mills-Higgs equations are an 
involutive, and hence formally integrable, system. To this end a key role is played 
by the gauge invariance of the theory and the resulting differential identities 
involving the field equations themselves. By applying a theorem of Malgrange, 
an existence theorem for the solutions of the Yang-Mills-Higgs field equations in 
the analytic context is thus obtained. The approach is within differential geometry. 

1. I N T R O D U C T I O N  

In the last decades classical gauge theories have been widely studied 
by both mathematicians and physicists (Daniel and Viallet, 1980; Drechsler 
and Mayer, 1977; Giachetta and Mangiarotti, 1989, 1990; Mangiarotti and 
Modugno, 1985). In particular, the pure Yang-Mills and the Yang-Mil ls -  
Higgs equations have been analyzed, and in some cases solved, using a 
combination of analytic and geometric methods (Atiyah et  al . ,  1978; Atiyah 
and Hitchin, 1988; Garland and Murray, 1989; Jaffe and Taubes, 1980). The 
classical solutions of  these equations (instantons, vortices, monopoles, etc.) 
have been revealed to be important not only on their own, but also for a 
partial understanding of  quantum theory (Abers and Lee, 1973; Faddeev and 
Slavnov, 1991). 

The aim of  this paper is to study the geometric structure of  the Yang- 
Mills-Higgs equations and their solutions. We do this by considering the 
formal theory of overdetermined systems of  partial differential equations 
(pde's), particularly in the form given by Kuranishi (1967) and Goldschmidt 
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(1967a,b). We show that the Yang-Mills-Higgs equations are an involutive 
system of pde's. Moreover, they are formally integrable. As a result we 
also prove an existence theorem for the solution of these equations in an 
analytic context. 

Our work follows the lines of Gasqui (1982); DeTurck (1981), and 
Giachetta and Mangiarotti (1994), where other equations of physical interest 
have been studied within the formal theory of pde's. 

The organization of the paper is as follows. In Section 2 we briefly 
summarize the main concepts of the jet bundle formalism. We also recall 
two important results: a theorem due to Goldschmidt (1967b), which provides 
sufficient conditions for the formal integrability, and a theorem by Malgrange 
(1972a,b), which in the analytic context guarantees the convergence of power- 
series solutions for pde's which are formally integrable. 

In Section 3 we turn our attention to the Yang-Mills-Higgs equations 
following the lines outlined in the previous section. To the end of proving the 
formal integrability of these equations, a key role is played by the differential 
identities which involve the field equations themselves and result from the 
gauge-invariance property of the theory. Moreover, other simple geometric 
properties of the spaces and maps involved are used. 

We hope that this paper may contribute to arousing interest in the formal 
theory of pde's and its use, which in our opinion is still widely unknown to 
mathematicians and physicists. 

2. FORMAL THEORY OF PDE'S 

2.1. Jet Formalism 

Throughout the paper all manifolds and maps will be smooth (C~). 
Manifolds will always be paracompact, Hausdorff topological spaces. A 
standard reference for material on the jet formalism is Saunders (1989). 

If M is a differentiable manifold, we denote by TM and T*M its tangent 
and cotangent bundles, respectively. The pth tensor, symmetric, and exterior 
products of 7"*M are denoted by | vpT*M, and ^PT"*M, respectively. 
We identify Vpl'*M and ^PT'*M with subbundles of | by defining 

O'ESp 

and 

oESp 

for all at . . . . .  ctp ~/ '*M, where Sp is the group of permutations of { 1 . . . . .  p } 
and sgn ~r is the sign of cr ~ S r. 



Y a n g - M i l l s - H i g g s  E q u a t i o n s  1 4 0 7  

I f  q~ E APT*M and t~ e AqT*M, we define the wedge  product  q~ A ~ 
A P + q T * M  by 

A ~(X~ . . . . .  Xp+q) 

_ 1 
pTqt ~ sgn cr tp(X,,<l) . . . . .  X~<p))d/(X~cp+l ) . . . . .  X~p+q~) 

�9 " ffESp+q 

for all Xl . . . . .  Xp+q ~ TM. 
Let 'rr: E ---> M be a f ibered manifo ld  (i.e., a surject ive submers ion) ,  with 

m = d i m M  and m + l =  d i m E  

The  standard chart  o f  E is denoted  by (x x, y"), with 1 <-- h -< m and 1 -< i 
<- l .  

Let  JkE be the kth-order  je t  prolongat ion o f  'rr, with k >- 0 (jOE = E). 
This is naturally a f ibered mani fo ld  'r?': J~E ---> M and a f iber bundle +r~,: JkE 

Jr'E, respectively,  with 0 --< h --< k. The  standard chart  o f  J~E is denoted 
by (x x, i Ys), with 0 ----- I BI ~ k, where  B = (Bt . . . . .  Bin) is a mul t i - index and 
I BI = BI + �9 "" + Bm- We put 

O = (0 . . . . .  0), B + h = (B= . . . . .  Bx + 1 . . . . .  Bin) (2. l) 

yi = y~, Y~ = Y~+x, ~/x~ L = Y O + X + p . ,  �9 �9 �9 

I f  s: M ---> E is a (local) section, then jts: M ---> JkE is its kth-order  jet  
prolongation,  whose  coordinate  express ion is 

(x a, yin) o j k s = (x a, On S i) 

where 

S i : y i ~  S a n d  OB Si : O BI "~  OBras i 

We will a lways  put j~s  -- j~s(x) for  any x in the ne ighborhood  where  s 
is defined. 

We have a basic affine structure on je t  manifolds;  namely  "n'~k-l: JkE ---> 
J g - I E  is an affine bundle,  for  k --> 1, whose  vec tor  bundle is the pul lback bundle 

Jk - lE  • vkT*M | VE 
E 

As is well  known,  if "rr: E ---> M is a vector  bundle,  then "rrk: JkE ---> M 
is a vector  bundle,  too. Moreover ,  there is a m o r p h i s m  o f  vector  bundles 
(over  M) 

~: vkT*M | E --> JkE 
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given by 

�9 y = 0  if 0 ~ l B l ~ k -  1 

~: ub ~ [yb u~ if I BI = k (2.2) 

where (x x, u~) is the standard chart of  vkT*M | E. 
A pde of order k on E is defined to be a fibered submanifold R k ~ M 

of "rr~: J~E ~ M. A solution of R t is a (local) section s: M ~ E such that 
its kth-order jet prolongation jks is a section of  7rk: R k ---) M. 

Let "rr': E' ---) M be another fibered manifold and let ~ :  JkE ---) E' be 
a morphism of fibered manifolds over M. Given a section s': M ---) E' ,  
we define 

R k = Ker.~,~ = {p ~ J~E: ~(p)  = s' o rrk(p)} (2.3) 

and assume that 

s '(M) C Im(~)  and �9 has locally constant rank (2.4) 

Then one can show that R k is pde of  order k. Note that any pde R ~ of  order 
k on E can be locally described as in (2.3) and (2.4). 

Let (x x, y,r) be the standard chart of  E',  with 1 --< r <-- l'. Then locally 
the morphism �9 is determined by the l' functions 

�9 r(xX, y~), 0 ~ I BI ~ k 

equal to y ' r  o ~ and the pde R k in (2.3) is defined by the equations 

qb~(x x, y~) = s'~(xX), 0 --< I BI <-- k 

In what follows we shall be interested in a distinguished class of  pde's. 
Let "rr': E' --~ M be a vector bundle and let ~ :  JkE --+ E' be a morphism of  
fibered manifolds. We say that �9 is quasilinear if there exists a morphism 
of  vector bundles 

cr(~): VkT*M | VE -+ E' (2.5) 

over J~-IE such that 

~ ( p  + ('rr~_l(p), u)) = cI)(p) + r , u) 

for every p E jkE and u ~ VkT*M | VE projecting over the same point of  
E. In other words, �9 is quasilinear if it is an affine morphism with respect 
to the affine structure of JkE over j k -  ~E. The map cr(~), uniquely determined 
by ~,  is called the symbol of �9 and the pde defined in (2.3), (2.4) is said to 
be a quasilinear pde. 

In the standard charts a quasilinear morphism ~ is determined by the 
functions 
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qb~(x x, y~, Yb) = t~iC(x ~, Y~)YJc + ~'(x ~, Y~), 
ICI =k 

0 < - I B l - - < k  - 1, ICI = k  

with o~C(x~, y~) defining the symbol cr(~) of ~. 
As is easily seen, if qb is quasilinear and o-(dO) is an epimorphism, then 

is a surjective submersion. Hence (2.4) is satisfied and 

T/.k_ i (e  k) = jk-1 E (2.6) 

Usually one denotes by 

G k C R k • v J * M  | VE 
E 

the pullback over R k of the kernel of cr(qb). Sometimes G k itself is called the 
symbol of ~. Of course, it has a structure of vector bundle over R k only under 
suitable regularity conditions of cr(~). 

We now introduce a basic concept of the theory of pde's, namely that 
of prolongation. Let ~ :  j kE  ---) E' and s': M ---> E' be as in (2.4). The hth- 
order prolongation of �9 (h -> 0) is the morphism 

(over M) defined by 

Ph(~): J k+hE ~ jhE'  

ph(ap)(j~x+hS) = j.h(dp o jks) (2.7) 

for every x ~ M and section s: M ---> E [p0(~) = ~] .  The subset 

R k+h = Kerjh,,ph(~) C Jk+hE (2.8) 

is called the hth-order prolongation of the pde R k. For example, the first- 
order prolongatioh p~(~) of �9 is determined in the standard charts by 

(I)r(A "X, y~) 
O ~ r ( x  x, yie) + oCdpr(x a, yin)yJc+ ~ 

It can be shown (Pommaret, 1978) that the prolongation depends on R k only, 
and not on the morphism �9 defining it. Obviously, the canonical projections 
qTk+h+ I. jk+h+l E jk+hE, --> k+h �9 ---> h -- > 0, restrict to maps _k+h+l.ttk+h �9 R*+h+t Rk+h" 

One can easily check that if �9 is quasilinear, then so is its prolongation 
of any order. The uniquely determined morphism of vector bundles 

fit,(d/)): Vk+hT*M | VE ---> VhT*M @ E' (2.9) 
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(over jk-~E) is called the hth-order prolongat ion of  the symbol cr(~). It is 
given by the composition 

i o ' ( ~ )  

vk+hT*M (~ VE "-. VhT*M | v~T*M | VE > VhT*M | E'  

where i denotes the canonical inclusion. 
The pullback over R k of the kernel of  O'h(~) is denoted by 

G k+h C R k • Vk+hT*M | VE 
E 

This may fail to be a vector bundle even if G k is a vector bundle. 

(2.10) 

2.2. A Criterion for Formal Integrability 

If M is a real-analytic manifold, E and E' are real-analytic fibered 
manifolds over M, ~ :  j k E  ---> E' is a real-analytic morphism, and s': M --> 
E' is a real-analytic section, then the pde defined in (2.3), (2.4) is said to 
be analytic. 

Given an analytic pde R k of order k, we are interested in finding its 
convergent power-series solutions in a neighborhood of any point x E M. 
We call a point of R k+h, h >- 0, a formal solution of  R k of  order k + h and 
a point of  R ~ = proj lim R k+h a formal solution. Of course, the construction 
of analytic solutions of R k demands a preliminary step. This consists in 
seeking whether a formal solution of  any order -->k can be prolonged to a 
formal solution. A sufficient condition is obviously that 

the maps ~k+h+,, k+h 1.. Rk+h+ I "-> R k+h, h >- O, are surjective (2.11) 

Then the following important theorem (Malgrange, 1972a,b) guarantees the 
existence of  convergent power-series solutions for analytic pde's satisfying 
(2.11). 

Theorem 2.1. Let R k be an analytic pde defined as in (2.3). Let x ~ M 
and h > 0. If k+n+l. /~,k+n+l /?k+, 7rk+, ---x ~ is surjective for all n > h, then for - -  = ' X  - -  

every point p ~ Rkx +h there exists an analytic solution s: U C M ---> E of R k 
over a neighborhood U of x such that jkx+hS = p. 

In general a direct check of  (2.11) is not simple. Nevertheless, there are 
criteria which allow us to verify the surjectivity of  all maps (2.11) in a finite 
number of  steps. We say that R k is f o rmal ly  integrable if all maps (2.11) are 
surjective submersions. The following theorem is due to Goldschmidt (1967b) 
and gives us sufficient conditions for formal integrability. Combined with 
Theorem 2.1, it leads to the existence of analytic solutions of analytic quasilin- 
ear pde's. 
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Theorem 2.2. Let ~:  JkE  ---> E' be a quasilinear morphism and let R k 
be the corresponding quasilinear pde defined in (2.3) and (2.4). If 

(i) G k§ is a vector bundle over R k 
(ii) ark+l: R k§ ---> R k is surjective 

(iii) G k is 2-acyclic 

then R k is formally integrable. 
The condition (iii) refers to the vanishing of some of the Spencer coho- 

mology groups H~-J'Y(Gk). We do not need to go into details here for these 
cohomology groups because we replace (iii) with a stronger condition, 
namely: 

(iii') For all p ~ R k there exists a quasiregular basis of T~k~p~M for 
G k at p. 

This means the following. Let x e M and let (Xx), with 1 --< h -< m. be a 
basis of TxM. If (0 ~') is the basis of T*M dual to (X~,), then we denote by vk../ 
T~xM the subspace of vkT~M spanned by 0 ~l v . . .  v 0 ~k, with j + 1 -< P.l 
-< "-. <- I.Lk --< m. For every p ~ R k we define 

(Gk)p.j = (Gk), f) vkjT~xM | (VE)e 

where x = ark(p) and e = ark(p). One says that (X~,) is a quasiregular  basis 
for G k at p if 

m-I 
dim(Gk+l)p = dim(Gk)p + ~ dim(Gk)p.j (2.12) 

j=l 

The condition (iii') corresponds to the involutivity of the symbol G k of 
R k. A pde R* is said to be involutive if it is formally integrable and its symbol 
G k is involutive. 

3. Y A N G - M I L L S - H I G G S  EQUATIONS 

3.1. Geometric Setup of the Yang-Mills-Higgs pde's 

Let P ----> M be a principal fiber bundle (dim M > I) with a compact 
structure Lie group G (Kobayashi and Nomizu, 1963). We denote by C ---> 
M the bundle of all principal connections on P. As is well known, this is an 
affine bundle whose associated vector bundle is T*M | Vc, P ---> M. Here the 
quotient bundle VcP = VP/G ---> M is the vector bundle of right invariant 
vertical vector fields on P. The standard charts of C, J IC, and J2C are denoted 
by (x x, a~,), (x x, a~,, a~.~,), and (x x, a~,, a~x, ar~.~), respectively [see (2.1)]. 
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Let A: M ~ C be a section, i.e., a principal connection on P (gauge 
potential). Locally we write 

(x • a~) o A = (x x, A~) 

where A~ are local functions on M. The curvature of A (field strength) is the 
following Vc, P-valued 2-form on M: 

2 
= I r dx ~ | e, (3.1) FA: M --+ A T * M  | VGP , F A ~Fh~dx x ^ 

F~.~ = O~A~ - O~A~. + c"pqA~A q 

(where er) is a basis of the Lie algebra of G and the Lie bracket [e,, eq] = 
Crpqer defines the right structure constants of G. 

Let V be a vector space on which G acts as a transformation group and 
let E ---> M be the corresponding associated vector bundle. Sections qb: M ---> 
E of this bundle are scalar (Higgs) fields. Standard coordinates on E, J~E, 
and JZE are denoted by (x a, tpi), (x ~, q~i, r a n d  (x x, q~i, %,.i, %~,i), respec- 
tively. Locally we write 

(X h, q~i) o f~ = (.If h, {~i) 

where l~b i are  local functions on M. Let p: LG ---) End(V) be the Lie algebra 
representation induced by the action of G on V. 

A principal connection A induces linear connections on the vector bun- 
dles Vc, P ~ M and E ---) M. We denote both of them by the same symbol 
V a. Their connection parameters are determined by the following equations: 

Vaeq = crpqA~dx x @ e, (3.2) 

Vaej  -= - - p ~ j A ~ d ~  @ e i (3.3) 

respectively. Here (el) is a basis of V and p~,; = (e i, p(er)ej). The Higgs field 
couples 'minimally' to the connection through the covariant derivative 

~lA.d# ~-  VA~.  : M --+ T*M | E, "YA.4, : ~ i xd~  @ ei (3.4) 

�9 ~i x = Oxdp i -  p i p j a ~ J  

Assume that M is an oriented manifold which carries a metric g of any 
signature. Let h and k be inner products on LG and V, respectively, such that 
the adjoint representation and the representation of G on V are unitary. We 
want to study the geometric structure of the following system of pde's: 

V a * Fa = Ja,,  (3.5a) 

VA * ~/a.,I, = 0 (3.5b) 
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where * is the Hodge operator and JA,+: M --~ ^ " - | T * M  | V~P is the current. 
These are the Yang-Mills-Higgs equations with vanishing self-interaction 
term. In coordinates they read 

0~(~/Ig] F~ x~) - , f ' ~ r A ~ . F ~  ~" + [,//-~p~@/~,~ = 0 (3.6a) 

i r I t  0 i t ( ~ / ~ ' )  + I,f'~glp~jAit~li = 0 (3.6b) 

Here we have defined 

F) ~ = h,.~ git~' gOf~ F~,,~ (3.7) 

~l) = kogit~"l~ (3.8) 

and g = det(gx~), where gxr hr,, and kis are the coordinate expressions of 
the metrics g, h, and k, respectively. The current Ja., is given by 

Ja., = - P *  * ~a., (3.9) 

JA,, = - 0 j,l,J  toit | e 

with 

co~= 0Jto and to = dx I A " "  ^ dx"' 

p* is a sort of pullback bringing E*-valued forrr/s on M to V~~ forms 
and whose definition is shown in the local expression (3.9). 

Let L = C E) E be the Whitney sum of the bundles C --) M and E --* 
M. We call L the Yang-Mills-Higgs configuration bundle. Let us consider 
the morphism 

m ~ [  l t l  

~: JZL --) ^ T*M | V~P 0 AT*M | E* (3.10) 

~(jxZA, j]~b) = [V a * Fa(x) - Ja.+(x), V a * ~/a,,(x)] 

for all x E M and sections (A, dp): M --~ L. From (3.7)-(3.9), (3.1), and (3.4) 
it is easily seen that �9 is quasilinear. According to (2.3), we define 

R 2 = K e r ~  ~ KerdP C J2L (3.11) 

where 0 is the zero section of 

o l -  | m 

^ 7"*M | V~P �9 ^T*M | E* ~ M 

A pair (A, qb) formed by a principal connection A: M --~ C and a Higgs field 
d~: M ~ E is a solution of the Yang-Mills-Higgs equations if and only if 
its second-order prolongation (j2A, j2qb): M --* J2L takes values in R 2. 
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3.2. Involutivity of the Yang-Mills-Higgs pde's 

In what follows we will show that (3.11) is an involutive pde. To begin 
with, let us verify that R z is a fibered submanifold of  J2L --> M, that is, a 
pde of  second order. To this end consider the symbol 

I / ~ -  ] t// 

v2T*M~)L--- )  A T 'M|  V~P @ A~'M ~ E* (3.12) ~(r 

of qb. Here 

I. = T ' M |  VGP O E---~ M 

is the vector bundle on which L ~ M is modeled. Denoting the standard 
chart of  v2T*M | L by (x x, u~.x r, v~.i), from (3.7)-(3.9), (3.1), and(3.4) we 
find that 

O'( fI) ) : Uvp.X r ~ x/ I g I hrs gX~ gr ux~a s - uxa~ ~) (3.13) 

o-(~): v ~  i ~ x/F~lkijgX~vx j 

Note that the symbol o'(~) is constant along the fibers of  J ~L ~ M. Note 
also that it is the direct sum of two symbols, namely 

with 

and 

~(r = ~(V * F) @ ~(V * 5,) 

m-I 
o'(V * F): vzT*M | T*M | Vc, P ---) A T*M | V~P 

(3.14) 

m 

cr(V * 5'): v27"*M | E --> ^ / '*M | E* 

Here V * Fand  V * 5, denote the Yang-Mills and Higgs operators, respectively. 
One can easily check that cr(V * F) is determined by the following 

composition of  morphisms: 

"q m - I  

v2T*M | T*M | Vc, P --) T*M | Vc, P "-') ^ I '*M | V~P (3.15) 

where ~ acts as the identity on VaP, while 

~j(~ v [3 | 5,) = 2g(a, [3)5' - g((x, 5')[3 - g([3, 5')a (3.16) 

for every g: M ---) L, cq [3, 5' a T 'M; ~q is the tensor product morphism of 
the Hodge operator on M and the metric isomorphism on Vc, P induced by 
h. The other symbol (r(V * 5') is the tensor product of the metric isomorphism 
between E and E* induced by k and the morphism 
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m 

4: v2T*M --~ AT*M, 4: a v [3 ~ 2g(a, [3)v/'l-~to (3.17) 

for all a,  [3 e T*M. 

Lemma 3.1. The symbol 0-(~) is a surjective morphism. 

Proof We show that both 0-(V * F) and o'(V * ~/) are surjective morph- 
isms. For every x e M, let (dx x) be an orthonormal basis of ~ M, i.e., 

{o 
g(dx x, d.@) = 1 if h =  tx 

Then consider the equations 

2g(a, [3)~ - g(a,  "/i) [3 - g([3, ~/)a = dx ~, 1 <:- h <- m 

Solutions to these equations are easily found; for example, ~/ = g ~ d x  x and 
a = [3 = 1/,,/~ dx r with Ix :~ h. Hence ~ is surjective. Since Xl is an 
isomorphism, it follows that 0"(7 * F) is surjective. The surjectivity of 
0"(V * ~/) is evident. �9 

According to (2.6) and the comment preceding it, an immediate conse- 
quence of this lemma is that R z C JZL is a fibered submanifold over M and 

"rr~(R z) = J IL (3.18) 

Now we consider the first-order prolongation of ~,  i.e., 

m - I  in 

Pt(~):  j3 L __> j l (  A T*M | V~P 0 AT*M | E*) (3.19) 

From (2.7) and (3.10) we see that 

pl(dP)(j3xa, j3x+) = [j~(V a * Fa - .1 a JA.,I,), Jx( 7 * ~/a.,l,)] (3.20) 

for all x e M and sections (A, ~b): M ~ L. Let 

r a - I  m 

0"t(~): v3T~M | L --> T*M | ( ^ T*M | ~ ~ ^T*M | E*) 

be the first-order prolongation of the symbol (3.12). Its coordinate expression 
can be obtained directly from (2.10) and (3.13), 

0-1(~): u~,,,~x" "-' ~ h ,  gX~'gV'f~(u,,x~,f~ ~ - u~,~,f~,~ ~) 

0-1(qb): Ven, o i ~  I.~lki.igXO'v~,x j (3.21) 

where (x x, u~,~r v , ~  i) is the standard chart of v3T*M @ L. Moreover, from 
(2.10) and (3.14) we see that 

0"1(~) = o',07 * F) O 0"1(V * ~/) (3.22) 
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where 

~ , ( V  * F): 

and 

m -  I 
v3T*M | T*M | VoP ~ T*M | ^ T*M | V~P 

m 
o'l(V * 3'): v3T*M | E ---> T*M | ^/ '*M | E* 

are the first-order prolongations of the symbols of the Yang-Mills and Higgs 
operators, respectively. In accordance with Section 2.1, we denote the kernel 
of erl(~) by G 3. 

Next we show that the conditions (i) and (ii) of Theorem 2.2 hold. Let 
A: M --> C be a principal connection and let 

m--I  m 
~I.rA: j l (  ^ T*M @ V~P) ----> ̂ T*M @ V~P 

be the morphism (over M) corresponding to the operator of covariant differen- 
tiation with respect to A, i.e., 

~a(j~0) = (Va0)(x) (3.23) 

for all x ~ M and sections 0: M---> ̂ m-IT*M | V~P. Recalling (3.2), we have 

xt ra :  ( x  x,  0 r  x, 0 p 0 r  x)  ~ (X  x, OXOXr __ CSqrAxOs)q x 

Note that ~a  is a linear morphism. Its symbol 

m - I  m 
er(xtr): T*M | ^ T*M | V~P ---> ̂ T*M | V~P 

is simply given by the wedge product. Note also that o'(xt r) actually does not 
depend on the connection A. For the sake of brevity, let us denote by the 
same symbol tr(~) the morphism 

m--I  m m 
tr(xtr): T*M | ( ^ T*M | V~P ~ ^T*M @ E*) ----> ̂ T*M | V~P 

defined as the composition of cr(~) with the natural projection onto the first 
factor, i.e., 

m-- | m 
T*M | ( ^ T*M | V~P @ ^1"*M | E*) 

m -  I cr(qt) m 

---> T*M | ^ T*M | V~P > ̂ T*M | V~P 

The following lemma tells us that G 3 is a vector bundle. 
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0 ~  G 3 - - ~  v 3 7 ~ M |  

Lemma 3.2. The sequence 

ffl ( ~ )  m--  1 m 

T*M | ( ^ T*M | V~P @ ̂ T*M | E*) 

or(V) ,n 

> ̂ T*M | V~P ~ O 

is exact. 

and 

Proof Notice that the sequence decomposes into two other sequences, 

(r I (~'*F') m -  [ 

0 ~ (GI) 3 ~ v3T*M | T*M | VcP ) T*M | ^ T*M | V~P 

~r(~) m 
> ̂ I"*M | V~P ~ 0 

0 ~ (G2) 3 ~ v3T*M | ff > T*M | ^ T * M  | E* ~ 0 

We begin by proving that (rl(V * "y) is surjective. By using (3.17) and 
neglecting ff and i f*  in the tensor products, we find that 

cn(V * ~)(~ v 13 v 8) = 2[g(~, 13)~ + g(~, ~)13 + g(13, 8)M | I ,  f i~o~  

for all c~, [3, and ~ E T*M. Let (dx x) be an orthonormal basis of ~ M, x 
M. Then the equations 

cr1(V * ~/)(~ v 13 v ~) = dx  ~ | o~, I -< h -< m 

are solved by a = 13 = dxr and ~ = �89 x, p, r h. As for the other 
sequence, from (3.21) we find 

er(~) o o't(V * F): u,~x" ~ ~/Ig I h,,gX~g~f~(u~x~f~" - u~f~, ~) 

= ~ h~,(gX~'g~f~u~x~f~ - g~f~g~'u• ~) = 0 

so that Im oh(V * F) C Ker cr(~). Now we show that Im ~q(V * F) D Ker 
cr(qO. Actually we prove the inclusion Im(~ o i) D Ker(o-(~) o Xl), which is 
equivalent to the above one since Xl: I"*M | Vc, P ~ ^m-~T*M | V~P is an 
isomorphism. Recalling (3.16) and neglecting Vc, P and V~P in the tensor 
products, we find that 

o i: v3T*M | T*M --) / '*M | T*M 

is given by 

o i(a v [3 v "y | ~) = 2g(a, 13)"/| ~ + 2g(a, "/)[3 | 8 + 2g(13, 'y)a | 

- g ( a ,  g)13 v 3, - g(13,  g ) a  v "y - g ( 'y ,  g ) a  v 13 
(3.24) 
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for  all a ,  [3, % g E T*M. In particular, 

o i (a  v a v a | g) = 6a  | [g (a ,  a )g  - g (a ,  8)a]  (3.25) 

On the other  hand, as one can easily verify, Ker(cr (~)  o -q) is generated by 
tensors o f  the type ix | Ix, with g(Ix, Ix) = 0, and Ix | p, with g(Ix, p) = 0, 
g(Ix, ix) 4: 0, g(p, p) g: 0; ix, p ~ T*M. Hence  we are left with the problem 
of  solving the equations 

6a  | [g(a ,  a )~  - g (a ,  ~)c~] = Ix | ix 

6e~ | [g(oq o0g - g(o~, 8 )a j  = Ix | p 

These  are solved by 

o~ -- IX, 

and 

8 such that - 6g ( ix ,  8) = 1 

1 
a = i x ,  8- p 

6g(ix, ix) 

respectively. Obviously  cr(~)  is a surjective morphism.  Therefore  the lemma 
is proved. �9 

Our next task is to verify the condit ion (ii) of  Theorem 2.2. 

Lemma 3.3. The  map 'n'3: R 3 ----) R 2 is surjective. 

Proof Let p ~ R 2 and let (A, dO): M --~ L be a section such that p = 
(j~A, j~dO). Consider  then 

m -  1 m 

e -t  opn(~)( j3A,  j3dO) ~ 7"ff~M| ( ^ T ~ M @  (V~P)xO ^T'~xM@ E*) 

Since p l ( ~ )  is quasilinear, the fiber (R3)p is not empty  iff  e -I  o p~(~)  
(j3A, j3dO) ~ I m  o t ( ~ )  or equivalently, due to L e m m a  3.2, iff o-(~)  o e - l  o 
pl(rb)(j3A, j3dO) = 0. From (3.20) and (3.23) and since ~'a is linear, we get 

cr(~) o e-~ o p~(rb)(j3A, j3dO) = xtrA[jlx(Va . FA -- JA.,t,)] 

Now using the differential identities 

VaV a * FA = 0, 

we find that 

= ( V a V  A * Fa - V a J a , , ) ( x )  

--TaJA., = P *Va * "YA., 

o-(xIt) o ~-t o pl(dO)(j3A, j3do) = (p ,Va , ,,/A.,I,)(X) 

and the result follows by using the field equation (3.5b). The  first of  the 
above identities is a well-known identity involving the curvature of  the 
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connection, whereas the other is a consequence of the unitarity of the represen- 
tation of G on V. �9 

Remark 3.4. Let us consider the case where a Higgs self-interaction 
potential U: E ---) AmT*M is present. Then the second Yang-Mills-Higgs 
equation (3.5b) becomes 

VA * 7A,,I, = Jr* (3.26) 

where f - -  DU: E --~ AmT*M ~ E* denotes the fiber derivative. In this case 
the preceding discussion still holds true apart from Lemma 3.3. Indeed now 
we have 

cr(xtr) o e-n o p l (~ ) ( j3  A, j3~b ) = (p*f,)(x) 

and hence R 3 --~ R 2 is surjective iff p 'f:  E ~ A"T*M | V~P vanishes 
identically. 

Consider the Lie algebra representation 

X: M ~ VaP ~ Ux: E--~ VE 

induced by p: LG --~ End(V). Locally it reads (Giachetta and Mangiarotti, 
1990) 

�9 . I ~  

X = X~er ~ ux = p~xrq )j. oq)i 

As one can easily verify, 

~ . x U  = (p'f ,  X) 

where ~ ,x  denotes the Lie derivative and ( , )  is the natural contraction 
between Vc, P and V~P. It follows that Lemma 3.3 holds whenever the Higgs 
potential U is gauge-invariant, i.e., ~s = 0 for every X: M ~ Vc, P. �9 

Finally let us show that the condition (iii') of Section 2.2 holds. 

Lemma 3.5. For every p ~ R 2 there exists a quasiregular basis of 
T~2~p)M for G 2 at p. 

Proof. Let p E R 2 and let (dx x) be an orthonormal basis of T~x M, with 
x = "rr2(p). We have the following dimension counting: 

dim(G2)p.m_l = dim G 

~(m - j ) ( m  - j + 1) 
dim(G2)pj / 2 

l < _ j < _ m -  2 

- l ] (m  dim G + dim V), 

(3.27) 

(3.28) 
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and 

dim(G2)p= [ m ( m 2  1) l ] ( m d i m G + d i m V )  (3.29) 

m 3 + 3m 2 -- 4m 
dim(G3)p = 6 (m dim G + dim V) + dim G (3.30) 

The proof of (3.27) goes as follows. By definition, (G2)p,,n_l = Ker 
cr(~)m-t, where 

t n - - |  ttl 

O ' ( ~ ) ) m _ l :  V2,m_I~ M | Lx ----) A T~ M Q (V~P)x G AT~ M | E* 

is the restriction of ~ (~)  to V2.m-l 7~ M | Lx. Using (3.16) and (3.17), we find 

~,, ,-i(d~ v dx ~ | d ~ )  = 2g'~dx x - 2gm• ~, 1 <- h --< m 

4,,- |(dx" v d ~ )  = 2g mm| to 

thereby showing that dim(Ker ~,~-l) = 1 and dim(Ker ~,,-1) = 0. Hence 

dim(G2)v,,,,_l = dim(Ker ~m-t)dim G + dim(Ker ~m-|)dim V = dim G 

To prove (3.28), note that 

cr(,l,)/ 
m - I  

v2,jT~M| ^ 7~M 

| (V~P)x 
m 

^ ~ M  
|  l 
<_j 
<--m-2 

is surjective and hence the sequence 

o'(Cl))j m - -  1 m 

0 "--) (G2)p,j --') v2,jT~xM | Zx ) ^ ~ M  | (V~P)x ~ AT~M | E* --> 0 

is exact. The equality (3.29) is an immediate consequence of Lemma 3. I. 
As for (3.30), from Lemma 3.2 we find 

dim(G3)p=(m+2) ( m 3  

= ( m + 2 )  (m 3 

dim G + dim V) - dim[Im oh(~)] 

dim G + dim V) - dim[Ker cr(~)] 

= 3 - m  (m dim G + dim V) + dim G 

m 3 + 3m 2 - 4m 
= (m dim G + dim V) + dim G 

6 
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It follows that 

m - I 

dim(G2)p + ~ dim(G2)p.j 
j=l 

_ [ m ( m ~  1) 1 ] ( m d i m G + d i m V )  

+ ~ m - j ) ( m - j +  1 ) _  1 (m 
j=l 2 

and since 

we find 

+ dim G 

d i m G + d i m V )  

mx-2 (m -- j ) (m - j + 1) _ m 3 - m - 6  

j=t 2 6 

m - -  I 

dim(G2). + ~ dim(G2)p.j 
j=l 

m 3 + 3m 2 - 4m 
= 6 (m dim G + dim I/) + dim G = dim(G3)p �9 

Summarizing the discussion of this section, we have shown that the 
Yang-Mil ls-Higgs pde (3.11) is involutive and hence formally integrable. 
Now assume that the principal bundle P ----> M and the metric g of  M are 
analytic. Then R 2 in (3.11) is an analytic pde and Theorem 2.1 leads us 
directly to the following theorem. 

Theorem 3.6. Let the principal bundle P ---> M and the metric g be 
analytic. For any x ~ M there is an analytic solution (actually many analytic 
solutions) (A, ~b) of the Yang-Mil ls-Higgs  pde's over a neighborhood of  x. 
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